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ABSTRACT

In combination with an appropriate background ocean model, simulations of internal
waves are necessary to create realistic scenarios for use in acoustic propagation studies.
Our approach employs contemporary understanding of internal wave statistics with a sim-
ulator that produces two-dimensional (range/depth) slices of internal wave displacements.
The method produces statistical realizations for acoustic studies that are true to ocean
measurements with nominal computational cost.
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1 Introduction

This report describes a numerical simulator that produces realizations of internal wave dis-
placements for use in studies of long-range acoustic propagation. The goals of any simulator
are twofold: first to produce simulations that are realistic, and second, to do so efficiently.

There are a variety of numerical simulators for internal waves. Like the one described
here, most are spectral models. These models commonly utilize the formulation for the
Garrett and Munk (GM) spectrum and in particular, the formulation based on a simplified
Wentzel–Kramers–Brillouin (WKB) approximation [6]. In shallow water or near the surface,
these WKB approximations are not valid. Taking a non-WKB approach improves simulation
realism with little cost, and provides an algorithm valid in both deep and shallow water.

For several years, the simulator described as a starting field in Winters and D’Asaro
[7] (hereinafter WD97) was employed to model situations involving relatively short-range
acoustic transmission experiments, i.e., less than 50 km. The fields may be incremented
in time consistent with the internal wave dispersion relationship and the method is almost
free of the WKB limitation. For shallow water and short-range situations, their approach
was extended to relax this limitation. However, because the code is three-dimensional, the
approach is computationally intensive. And, to minimize memory usage, strict limits are
imposed on the smallest and largest wave numbers that may be represented.

An attempt was made to use 3-D fields from the WD97 technique for long-range prop-
agation studies. Two-dimensional depth-range fields were obtained by slicing through the
3-D field along an angle, then interpolating the field onto the desired grid. This allows
continuous slices to any range to be formed. In WD97, 2-D horizontal fast Fourier trans-
forms (FFTs) are taken at each depth so the fields are periodic about the boundaries.
Unfortunately, periodicities related to the size of the box inevitably are produced in the
output fields. So WD97 produces reasonably realistic fields within its domain. However, it
is computationally intensive and when extended to long range, the resulting fields are not
realistic. The WD97 approach was not designed for long-range propagation studies.

It was realized that by sampling in kx and k =
√
k2

x + k2
y rather than the traditional

kx and ky, only a moderate number of k-values are required. But a trade-off is made: the
problem reduces to a single Fourier transform in x providing a field at one (or a few) y-
values. The resulting internal wave simulator is very efficient and meets our requirements
of producing displacement fields that (1) have megameter or greater periodicities, (2) are
not constrained by the WKB approximation, and (3) contain a broad range of vertical
and horizontal scales. Hence the simulator generates realistic fields to very long ranges
(megameters). In section II, the formulation is described. In section III, examples and
results from tests are shown. An appendix presents a pseudo-code for reference by those
wishing copies of the software.
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2 Method

Much of our formalism develops from Henyey et al. [4] (hereinafter H97). The numerical
simulator follows the presentation in WD97, where a general method for a five-variable
simulation is presented. Here, obtaining sound speed variations requires only the internal
wave displacement field. Depict this field in two dimensions as ζ(x, y, z; t). The third
dimension y = 0. Note that throughout this discussion, time is considered a parameter.
For convenience consider the displacement field in terms of the component horizontal wave
number kx , where x and kx are Fourier transform pairs, then

ζ(kx, y, z) =
∫
eiyky

M∑
j=1

{G−e
−iωjkt +G+e

iωjkt}ϕj,k(z)dky (1)

which is analogous to Eq. 18 in WD97.

We evaluate this expression at a given y = y0. An inverse Fourier transform at each
depth provides ζ(x, y0, z; t). In an ocean modeled as horizontally infinite in both directions,
G− and G+ are generalized functions of a continuous wave vector. From this point we will,
as an approximation, treat them as ordinary functions of a discrete wave vector. Each of the
discrete wave vectors is representative of a small area of continuous wave vector surrounding
the discrete value. These areas fill up the whole space without overlapping. The value of G−
or G+ at one of the discrete points is the average of the corresponding generalized function
over the area surrounding that point.

For a finite depth ocean, there is a decomposition in the wave field in vertical modes
ϕj,k(z), where mode number j = 1, 2, . . . ,M . The modes ϕj,k(z) and their frequencies
are functions of the horizontal wave number k, where k2 = k2

x + k2
y (cf. WD97 Eq. 8

ff.). The modes and frequencies ωjk are obtained by a method that has been passed from
researcher to researcher for many years. We map the problem onto finding the eigenvalues
and eigenvectors of a symmetric, tri-diagonal matrix. In terms of eigenfunctions ψ =√
n2 − f2ϕ , Eq. 8 of WD97 for the vertical modes may be written as

1√
n2 − f2

(k2 − ∂2
z )

1√
n2 − f2

ψ = λψ (2)

The eigenvalues
λ = k2/(ω2 − f2) (3)

and eigenfunctions are obtained using a tri-diagonal mode solver. In this mapping, the
mode normalization ∫ 0

−Lz

(n2 − f2)ϕj,k(z)ϕj′,k(z) dz = δjj′ (4)

and boundary conditions, ϕj,k(−Lz) = ϕj,k(0) = 0 are preserved.
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To obtain the displacement field in two dimensions for a given depth as a function of
horizontal wave number, there is a summation over j and over k. This differs from WD97.
The reduction to two dimensions requires us to define ky in terms of k and kx.

The wave amplitudes are determined by G− and G+. These are complex random de-
viates generated separately to allow independent right- and left-going waves. G− and G+

have zero mean, with a variance given by the internal wave spectrum defined below and
by the wave number area represented by one wave vector. The variance is proportional to
1/area because of the averaging of delta-correlated quantities.

The technique defined in Eq. 1 is common. Realizations are obtained via Monte Carlo
method on the weights, G− and G+. A displacement realization is generated in the wave
number domain, with amplitude determined by the model spectrum. Note that the depth
dependence is specified by the amplitudes of the vertical modes. (This property is one
step in freeing us from the WKB approximation.) At this stage, WD97 uses a 2-D inverse
Fourier transform at each depth and obtains the field in the 3-D spatial domain.

Our method uses the full spectral model. This is reduced to one dimension in the hori-
zontal by summing over circles or annuli in horizontal wave number space. Once generated
in the wave number domain, only a one-dimensional inverse FFT is needed to obtain the
field in range. The result is an efficient and accurate algorithm.

Consider the differential displacement variance in frequency, mode number, and hori-
zontal wave number

S(ω, j)dωdj
dθ

2π
(5)

Though the mode number increment, dj, equals 1, we leave it in for completeness. We
assume the spectrum and the vertical modes are independent of horizontal direction (i.e.,
the field is horizontally isotropic). In Eq. 5, θ is the direction of the horizontal wave number.
Writing the variance in terms of increments in horizontal wave numbers gives

S(ω, j)dωdj
dθ

2π
=
S(ω, j)dω

2πkdk
djdkxdky (6)

Recognizing the group speed, vg = dω/dk, and folding the ky integral to the positive ky

side, the differential variance becomes

var =
S(ω, j)vg

πk
djdkxd|ky| (7)

In terms of the annulus ki < k < kf ,

dk = kf − ki (8)

d|ky| =
√
k2

f − k2
x −

√
k2

i − k2
x (9)

At this point, our derivation has diverged from H97. Finally, using Eq. 6, with 〈·〉 denoting
an expected value,

〈|G+|2〉 + 〈|G−|2〉 =
S(ω, j)vg

πk
djdkxd|ky| (10)
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Figure 1: Example of the sampling in the first quadrant of the (kx, ky) plane. Only the first
12 values of horizontal wave number k are shown, corresponding to m = 0, 1, 2, . . . , 11. The
logarithmic spacing in k is already evident. The gridding is uniform in kx. Only 12 modes
need be computed to support this constellation of sample points in (kx, ky) space.

This assumes a two-sided spectrum in kx. The Jacobian

J =
vg

πk
(11)

arises from the conversion of dωdθ to dkxd|ky|.

Due to horizontal isotropy, the computational effort of calculating the modes can be
significantly reduced over that involved in a standard sampling of the (kx, ky) plane by only

computing the modes on a grid of k =
√
k2

x + k2
y values. The sampling here is also chosen

to have logarithmic spacing with the first increment in each decade equal to about 10%
over the first value. This puts about 25 sample points in each decade. Thus, the horizontal
wave number spacing is given as km = k0r

m, m = 0, 1, 2, . . . with r = 100.04. The lowest
mode wave number is set as k0 = 2π/Lkh0, where Lkh0 is the length scale of this mode.

The conversion from sampling in (kx, ky) to sampling in (k, kx) on annuli of constant
k results in non-uniform contributions to the simulation along the ky axis (Fig. 1). Here,
the sample (kx, ky) locations for the first 12 “rings” (m = 0, 1, 2, . . . , 11) are shown, and
Lkh0 = 1×105 m and ∆kx = 2π/Lx with Lx = 1×106 m. Only the (kx, ky) sample locations
corresponding to positive k2

y = k2−k2
x are valid. This results in sparse samping near the kx
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Figure 2: Examples of the differential areal tiling based on the (k, kx) sampling scheme.
The example presents only the sampling in the first quadrant of the (kx, ky) plane.

axis. This scheme is designed for accurate simulations along the x axis, but not the y axis.

The differential variance contributions defined by Eq. 9 result in a non-uniform kx −
ky tiling of the (kx, ky) plane (Fig. 2). A small correction to the differential variance
contribution (Eq. 9) is required for the first ring, or differential elements adjacent to the kx

axis. If m = 0 or ki ≤ kx, then d|ky| =
√
k2

f − k2
x. This essentially models the contribution

as coming from a triangle with an apex at the origin (instead of a rectangle).

The group speed dω/dk is obtained directly using the Hellmann–Feynman theorem [2,3].
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Using Eq. 3,
dω

dk
=

1
2
k

ωλ

[
2 − k

λ

dλ

dk

]
(12)

The term dλ/dk can be computed from Eq. 2. Differentiating both sides of Eq. 2 by k yields

2k
n2 − f2

ψ =
dλ

dk
ψ (13)

Multiplying both sides by ψ and integrating over depth yields

2k
∫
ϕ2(z) dz =

dλ

dk

∫
(n2 − f2)ϕ2(z) dz (14)

using the definition of ψ. However, from Eq. 4,
∫

(n2 − f2)ϕ2 dz = 1. Hence

dω

dk
=

k

ωλ

[
1 − k2

λ

∫
ϕ2 dz

]
(15)

=
ω2 − f2

ωk

[
1 − (ω2 − f2)

∫
ϕ2 dz

]
(16)

Thus, once the modes ϕ and the eigenfrequencies ω have been computed, the group speed
dω/dk can be determined directly. No WKB approximations are required in this step.

To this point, any spectrum could be used. We follow H97 who utilize a GM spectrum
modified so as not to include WKB approximations. This model decomposes into frequency
and vertical mode number. In this representation the spectrum is separable. H97 defines
the spectrum as

S(ω, j) = (BEGM )(n0B)2H(j)
2
π

f

ω3

√
ω2 − f2 (17)

where
n0B =

∫
n(z)dz (18)

and
H(j) =

H0

j2 + j2∗
(19)

The constant H0 normalizes to unity the summation of H(j). The WKB limitation is
removed from the traditional GM spectral model. Density does not enter this formulation;
the spectrum is in terms of energy per unit mass. Note BEGM is a single parameter and
j∗ is the traditional characteristic (vertical) mode number. Both BEGM and j∗ must be
specified in each simulation. GM neglected the contribution of the deeper part of the ocean
in the integral of Eq. 18, resulting in a significant underestimate of n0B. If a corrected value
of n0B is used, both BEGM and j∗ should be appropriately adjusted. Note also that Eq. 1
is written as a function of y. At this time, we have only implemented the code to evaluate
the field at a single value of y0. For convenience, we have selected the plane y0 = 0.
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Figure 3: Buoyancy profile used in the tests. The profile is the “Munk canonical profile”
modified by the Coriolis frequency at 25◦.

3 Tests

We present two tests to demonstrate both the validity and viability of the method. First
we examine the variance of the simulated internal wave variability. The second explores the
distribution of energy in horizontal wave number. In both cases, the numerical results are
compared with predictions from WKB theory that are readily calculable.

In the following tests, a test buoyancy profile was constructed using n2(z) = n2
Munk(z)+

f2, where nMunk(z) = n0e
−z/B, and n0 = 3 cph and B is a vertical scale length here assigned

1300 m. The Coriolis frequency was based on a latitude of 25◦. This profile is shown in
Fig. 3.

With the buoyancy profile specified, the other parameters found in the spectrum (Eq. 17)
must be set. The computed values of N0B and BEGM are 6.67 m s−1 and 8.32× 10−2 vice
the canonical values of 6.81 m s−1 and 8.20 × 10−2. The differences are due to numerical
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Figure 4: Color contour plot for a typical single realization of internal wave displacements.
A range of 100 km is plotted (corresponding to an n/f aspect ratio of 20). iseed was −1
and t was 0.0.

error in the quadrature of n(z). The low-mode cutoff was assigned the value of the canonical
model, j∗ = 3. The computational domain was 1000 km in range and 5.5 km in depth with
sampling of 8192 points in the horizontal and 512 points in the vertical. In the program
a base 2 FFT is used in the horizontal. This can be changed. A vertical sampling of 512
steps was chosen for convenience. This may be increased for larger j∗. The total number
of internal wave vertical modes was chosen to be 80.

A portion of a typical realization is shown in Fig. 4. Note that because of the aspect
ratio the contours are distorted. In reality the displacement contours form pancake-like
structures stretched out in the horizontal.

VARIANCE

The simplest test is to estimate the displacement variance for a given depth and compare
with WKB theory. The variance given by Munk [6] is

〈ζ2〉WKB = 1
2BEGM

n0B

n(z)
(20)

Multiplying both sides by n(z) removes the depth dependence from the Munk variance, and
one obtains

n(z)〈ζ2〉WKB = 1
2BEGMn0B (21)

which we compare to n(z)〈ζ2〉. The comparisons between Eq. 21 and the result from five
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Figure 5: Five simulation realizations of n〈ζ2〉 using iseed = −1,−2,−3,−4,−5. The
vertical line is the WKB result at 0.277. This figure tests Eq. 21.

simulations are shown in Fig. 5. The simulations all used time t = 0, and random number
generator seeds, iseed, of −1, −2, −3, −4, and −5. Over mid-depth, the simulated results
are within ± 20% of the WKB prediction. The comparison above 2500 m is especially good.
Very near the surface and toward the bottom, WKB is not expected to be valid.

TOWED DISPLACEMENT SPECTRA

We turn now to compare displacement spectra of (one-dimensional) horizontal wave
number. Referred to as “towed,” these spectra may be estimated from measurements using
horizontal tows of sensors that are suspended at fixed depths from a ship steaming in one
direction. The displacement may be inferred from temperature measurements, for example,
by using the vertical temperature gradient and assuming a linear relationship.

From the simulations, we have the displacement data directly. A sample spectrum is
shown in Fig. 6 from one of the simulations. There is considerable variability at low wave
number. The theoretical spectrum can be obtained from Eq. 1 and is

TSζ(kx) =
∫ ∑

j

S(ωjk, j)vg

πk
ϕ2

jk(z) d|ky| (22)

Both spectra generally follow a k−2
x dependence at high wave number. This is expected

from WKB theory where for convenience, we obtain predictions by evaluating numerically
an expression (Eq. 19) from Levine et al. [5]. This expression is complicated but may be
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Figure 6: Comparisons of horizontal “towed” spectra at depth 700 m. A single realization is
used (iseed = −1). The sample variance was 92.74. The autospectrum was estimated using
the multitaper method with 8 tapers and a time-bandwidth product of 4. This is shown in
blue. The estimated integral of the sample autospectrum was 93.77. The full theoretical
expression (using 101 modes) is shown in red — this is Eq. 22. The discretization of the
sampling in wave number space is evident as a “stair-step” appearance in the theoretical
curve at higher wave numbers. The predicted variance based on an estimated integral of
this curve is 83.97. Additionally, the Levine et al. [5] approximate expression is shown with
a solid black line. This figure tests Eq. 22 and Eq. 23.

interpreted by considering the approximate formula given by Desaubies [1] for high wave
number:

TSζ(kx) = π

(
2
π

)3

BEGM
j∗f

n

(
ln
n

f
− n2 − f2

2n2

)
k−2

x (23)

There is an n(z)−1 dependence in depth and a k−2
x dependence in wave number.

We expect from Fig. 5 that spectra near the surface and bottom will not follow the
WKB behavior. We select a mid-depth of 700 m for the comparison. The sample spectrum is
shown in Fig. 6 along with the WKB prediction. The model and data spectra are consistent
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with each other and confirm the horizontal wave number behavior in the simulation.

Both the total variance and the horizontal spectral behavior of the simulations are
consistent with the underlying model. Each simulation is an independent realization. The
variability observed between simulations is typical for Monte Carlo experiments and demon-
strates the acceptability of the method.

4 Summary

This report describes a numerical simulator for creating two-dimensional range/depth slices
of sound speed variability associated with ocean internal waves. The simulator is both
efficient and realistic. Designed for studies of internal wave effects on megameter acoustic
propagation, it may also be used for short and intermediate ranges. The algorithm does
not depend on WKB approximations, and therefore remains accurate in shallow water or
near the ocean surface. Combined with the appropriate deterministic background profiles,
the statistical model for the internal waves produces realizations that are true to ocean
measurements while the method is easy to implement with low computational cost.

The method also can be extended to simulations wherein an accurate random wave field
is needed for arbitrary values of x and y — i.e., fully 3-D simulations, not only simulations
along a section y = y0. In such cases, the tiling in the (kx, ky) domain should be square, so
that dkx and dky are the same everywhere. Gridding of the kx and ky axes then becomes
uniform. Efficiency is retained as the contributions {k, dwjk/dk, ϕjk(z)} are assigned to be
the contributions from the annulus for k′ closest to the point (kx, ky).

TM 1-13 11
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Appendix: Pseudo-code

The pseudo-code for an implementation of the method (Fig. 7) and input parameters (Ta-
ble 1) are given. Where appropriate, these parameters were used in the results described
in this report.

loop over kh { kh = k0*r**m; m=0, 1, ..., nkh }
compute modes, frequencies, and group velocities for each kh

loop over kx { kx = 0, 1/Lx, ..., Nx/(2Lx)
zero accumulator at kx and depth z
compute d|ky|

loop over j {1,2,...JMAX}
compute variance Var = S(omega,j)*vgp/(pi*kh)*dj*dkx*d|ky|
generate G+ from CN(0, Var)
generate G- from CN(0, Var)

loop over z
accumulate [G+*e^(i*omega*t) + G-*e^(-i*omega*t)]*mode_j(z)

endloop (z)
endloop (j)

endloop( kx )
endloop( kh )

loop over depth z
zeta(z) = IDFT{ accumulant(kx;z) }

endloop (z)

Figure 7: Pseudo-code for a simulator.

TM 1-13 13
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Parameter Description Current Value Pseudo-code
Lx x-dimension (total range) 1 × 106 m Lx
Nx number of points in x-direction 8192 Nx
Nz number of points in z-direction 512
jmax number of vertical displacement modes j 80 JMAX
t evolution time for the realization time [s] t
Nk number of horizontal wavenumber modes m 80 nkh
Lkh0 length of largest horizontal mode 1 × 105 m 2π/k0
iseed initializes random number generator integer (< 0)
j∗ vertical displacement mode bandwidth 3 in S()
f inertial frequency, 4πΩ sin(latitude) [rad/s] latitude dependent in S()
Ω rotation rate of Earth’s surface 1 cycle/day
BEGM strength [m] 8.32 × 10−2 in S()
n(z) buoyancy frequency profile [rad/s] profile dependent in S()
r log-step increment, horizontal wavenumbers 100.04 r

Table 1: Parameters required in the algorithm.
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